Your browser doesn't support javascript.
節目: 20 | 50 | 100
结果 1 - 6 de 6
过滤器
添加過濾器

资料库
年份範圍
1.
medrxiv; 2023.
预印本 在 英语 | medRxiv | ID: ppzbmed-10.1101.2023.10.26.23297581

摘要

ImportanceCOVID-19 continues to cause significant hospitalizations and deaths in the United States. Its continued burden and the impact of annually reformulated vaccines remain unclear. ObjectiveTo project COVID-19 hospitalizations and deaths from April 2023-April 2025 under two plausible assumptions about immune escape (20% per year and 50% per year) and three possible CDC recommendations for the use of annually reformulated vaccines (no vaccine recommendation, vaccination for those aged 65+, vaccination for all eligible groups). DesignThe COVID-19 Scenario Modeling Hub solicited projections of COVID-19 hospitalization and deaths between April 15, 2023-April 15, 2025 under six scenarios representing the intersection of considered levels of immune escape and vaccination. State and national projections from eight modeling teams were ensembled to produce projections for each scenario. SettingThe entire United States. ParticipantsNone. ExposureAnnually reformulated vaccines assumed to be 65% effective against strains circulating on June 15 of each year and to become available on September 1. Age and state specific coverage in recommended groups was assumed to match that seen for the first (fall 2021) COVID-19 booster. Main outcomes and measuresEnsemble estimates of weekly and cumulative COVID-19 hospitalizations and deaths. Expected relative and absolute reductions in hospitalizations and deaths due to vaccination over the projection period. ResultsFrom April 15, 2023-April 15, 2025, COVID-19 is projected to cause annual epidemics peaking November-January. In the most pessimistic scenario (high immune escape, no vaccination recommendation), we project 2.1 million (90% PI: 1,438,000-4,270,000) hospitalizations and 209,000 (90% PI: 139,000-461,000) deaths, exceeding pre-pandemic mortality of influenza and pneumonia. In high immune escape scenarios, vaccination of those aged 65+ results in 230,000 (95% CI: 104,000-355,000) fewer hospitalizations and 33,000 (95% CI: 12,000-54,000) fewer deaths, while vaccination of all eligible individuals results in 431,000 (95% CI: 264,000-598,000) fewer hospitalizations and 49,000 (95% CI: 29,000-69,000) fewer deaths. Conclusion and RelevanceCOVID-19 is projected to be a significant public health threat over the coming two years. Broad vaccination has the potential to substantially reduce the burden of this disease. Key pointsO_ST_ABSQuestionC_ST_ABSWhat is the likely impact of COVID-19 from April 2023-April 2025 and to what extent can vaccination reduce hospitalizations and deaths? FindingsUnder plausible assumptions about viral evolution and waning immunity, COVID-19 will likely cause annual epidemics peaking in November-January over the two-year projection period. Though significant, hospitalizations and deaths are unlikely to reach levels seen in previous winters. The projected health impacts of COVID-19 are reduced by 10-20% through moderate use of reformulated vaccines. MeaningCOVID-19 is projected to remain a significant public health threat. Annual vaccination can reduce morbidity, mortality, and strain on health systems.


主题 s
COVID-19
2.
medrxiv; 2023.
预印本 在 英语 | medRxiv | ID: ppzbmed-10.1101.2023.06.28.23291998

摘要

Our ability to forecast epidemics more than a few weeks into the future is constrained by the complexity of disease systems, our limited ability to measure the current state of an epidemic, and uncertainties in how human action will affect transmission. Realistic longer-term projections (spanning more than a few weeks) may, however, be possible under defined scenarios that specify the future state of critical epidemic drivers, with the additional benefit that such scenarios can be used to anticipate the comparative effect of control measures. Since December 2020, the U.S. COVID-19 Scenario Modeling Hub (SMH) has convened multiple modeling teams to make 6-month ahead projections of the number of SARS-CoV-2 cases, hospitalizations and deaths. The SMH released nearly 1.8 million national and state-level projections between February 2021 and November 2022. SMH performance varied widely as a function of both scenario validity and model calibration. Scenario assumptions were periodically invalidated by the arrival of unanticipated SARS-CoV-2 variants, but SMH still provided projections on average 22 weeks before changes in assumptions (such as virus transmissibility) invalidated scenarios and their corresponding projections. During these periods, before emergence of a novel variant, a linear opinion pool ensemble of contributed models was consistently more reliable than any single model, and projection interval coverage was near target levels for the most plausible scenarios (e.g., 79% coverage for 95% projection interval). SMH projections were used operationally to guide planning and policy at different stages of the pandemic, illustrating the value of the hub approach for long-term scenario projections.


主题 s
COVID-19
3.
medrxiv; 2022.
预印本 在 英语 | medRxiv | ID: ppzbmed-10.1101.2022.11.22.22282480

摘要

Optimization of control measures for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in high-risk institutional settings (e.g., prisons, nursing homes, or military bases) depends on how transmission dynamics in the broader community influence outbreak risk locally. We calibrated an individual-based transmission model of a military training camp to the number of RT-PCR positive trainees throughout 2020 and 2021. The predicted number of infected new arrivals closely followed adjusted national incidence and increased early outbreak risk after accounting for vaccination coverage, masking compliance, and virus variants. Outbreak size was strongly correlated with the predicted number of off-base infections among staff during training camp. In addition, off-base infections reduced the impact of arrival screening and masking, while the number of infectious trainees upon arrival reduced the impact of vaccination and staff testing. Our results highlight the importance of outside incidence patterns for modulating risk and the optimal mixture of control measures in institutional settings.


主题 s
Severe Acute Respiratory Syndrome
4.
medrxiv; 2021.
预印本 在 英语 | medRxiv | ID: ppzbmed-10.1101.2021.11.28.21266969

摘要

Like other congregate living settings, military basic training has been subject to outbreaks of COVID-19. We sought to identify improved strategies for preventing outbreaks in this setting using an agent-based model of a hypothetical cohort of trainees on a U.S. Army post. Our analysis revealed unique aspects of basic training that require customized approaches to outbreak prevention, which draws attention to the possibility that customized approaches may be necessary in other settings, too. In particular, we showed that introductions by trainers and support staff may be a major vulnerability, given that those individuals remain at risk of community exposure throughout the training period. We also found that increased testing of trainees upon arrival could actually increase the risk of outbreaks, given the potential for false-positive test results to lead to susceptible individuals becoming infected in group isolation and seeding outbreaks in training units upon release. Until an effective transmission-blocking vaccine is adopted at high coverage by individuals involved with basic training, need will persist for non-pharmaceutical interventions to prevent outbreaks in military basic training. Ongoing uncertainties about virus variants and breakthrough infections necessitate continued vigilance in this setting, even as vaccination coverage increases.


主题 s
COVID-19
5.
medrxiv; 2020.
预印本 在 英语 | medRxiv | ID: ppzbmed-10.1101.2020.08.22.20179960

摘要

Importance: In the United States, schools closed in March 2020 to reduce the burden of COVID-19. They are now reopening amid high incidence in many places, necessitating analyses of the associated risks and benefits. Objective: To determine the impact of school reopening with varying levels of operating capacity and face-mask adherence on COVID-19 burden. Design: Modeling study using an agent-based model that simulates daily activities of the population. Transmission can occur in places such as schools, workplaces, community, and households. Model parameters were calibrated to and validated against multiple types of COVID-19 data. Setting: Indiana, United States of America. Participants: Synthetic population of Indiana. K-12 students, teachers, their families, and others in the state were studied separately. Interventions: Reopening of schools under three levels of school operating capacity (50%, 75%, and 100%), as well as three assumptions about face-mask adherence in schools (50%, 75%, and 100%). We compared the impact of these scenarios to reopening at full capacity without face masks and a scenario with schools operating remotely, for a total of 11 scenarios. Main outcomes: SARS-CoV-2 infections, symptomatic cases, and deaths due to COVID-19 from August 24 to December 31. Results: We projected 19,527 (95% CrI: 4,641-56,502) infections and 360 (95% CrI: 67-967) deaths in the scenario where schools operated remotely from August 24 to December 31. Reopening at full capacity with low face-mask adherence in schools resulted in a proportional increase of 81.7 (95% CrI: 78.2-85.3) times the number of infections and 13.4 (95% CrI: 12.8-14.0) times the number of deaths. High face-mask adherence resulted in a proportional increase of 3.0 (95% CrI: 2.8-3.1) times the number of infections. Operating at reduced capacity with high face-mask adherence resulted in only an 11.6% (95% CrI: 5.50%-17.9%) increase in the number of infections. Conclusions and Relevance: Reduced capacity and high face-mask adherence in schools would substantially reduce the burden of COVID-19 in schools and across the state. We did not explore the impact of other reopening scenarios, such as alternating days of attendance. Heterogeneous decisions could be made across different districts throughout the state, which our model does not capture. Hence, caution should be taken in interpreting our results as specific quantitative targets for operating capacity or face-mask adherence. Rather, our results suggest that schools should give serious consideration to reducing capacity as much as is feasible and enforcing adherence to wearing face masks.


主题 s
COVID-19 , Severe Acute Respiratory Syndrome , Death
6.
medrxiv; 2020.
预印本 在 英语 | medRxiv | ID: ppzbmed-10.1101.2020.03.15.20036582

摘要

By March 2020, COVID-19 led to thousands of deaths and disrupted economic activity worldwide. As a result of narrow case definitions and limited capacity for testing, the number of unobserved SARS-CoV-2 infections during its initial invasion of the US remains unknown. We developed an approach for estimating the number of unobserved infections based on data that are commonly available shortly after the emergence of a new infectious disease. The logic of our approach is, in essence, that there are bounds on the amount of exponential growth of new infections that can occur during the first few weeks after imported cases start appearing. Applying that logic to data on imported cases and local deaths in the US through March 12, we estimated that 22,876 (95% posterior predictive interval: 7,451 - 53,044) infections occurred in the US by this date. By comparing the model's predictions of symptomatic infections to local cases reported over time, we obtained daily estimates of the proportion of symptomatic infections detected by surveillance. This revealed that detection of symptomatic infections decreased throughout February as exponential growth of infections outpaced increases in testing. Between February 21 and March 12, we estimated an increase in detection of symptomatic infections, which was strongly correlated (median: 0.97, 95% PPI: 0.85 - 0.98) with increases in testing. These results suggest that testing was a major limiting factor in assessing the extent of SARS-CoV-2 transmission during its initial invasion of the US.


主题 s
COVID-19 , Severe Acute Respiratory Syndrome , Death , Communicable Diseases
搜索明细